

Institute of Energy and Mechanical Engineering named after A. Burkitbayev Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 8D07120 «Industrial engineering »

Code and classification of the field of	8D07 «Engineering, manufacturing and
education	civil engineering»
Code and classification of training	8D071 «Engineering and engineering
directions	trades»
Group of educational programs	D103 «Mechanics and metal working»
Level based on NQF	8
Level based on IQF	8
Study period	3 years
Amount of credits	180

Almaty 2024

Educational program 8D07120 «Industrial engineering» was approved at the meeting of K.I. Satbayev KazNRTU Academic Council Minutes # 17 dated «11» July 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council Minutes # 8 dated «05» July 2024

Educational program 8D07120 «Industrial engineering» was developed by Academic committee based on direction 8D071 «Engineering and engineering trades»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	of
Teaching staff:			V	/
Kaliev Bakytzhan	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	But
Bortebayev Saiyn	Candidate of Technical Sciences,	Associate Professor	KazNRTU named after K.I. Satbayev	A
Employers:			1	Λ
Stvaev Nurzhan		Chairman of the Management Board of Alageum Group	Alageum Group LLP	af
Students				
Moshanov Kanat		2nd year doctoral student	KazNRTU named after K.I. Satbayev	leng

Table of contents

List of abbreviations and designations	4
1. Description of educational program	5
2. Purpose and objectives of educational program	5
3. Requirements for the evaluation of educational program learning	6
outcomes	
4. Passport of educational program	8
4.1. General information	8
4.2. Relationship between the achievability of the formed learning	10
outcomes according to educational program and academic disciplines	
5. Curriculum of educational program	13

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev – NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATBAYEV»; SOSE – State obligatory standard of education of the Republic of Kazakhstan; Kazakhstan; EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

CED – catalog of elective disciplines;

UC – university component;

CC – component of choice;

NQF - National Qualifications Framework; S

QF – Sectoral Qualifications Framework;

LO – learning outcomes;

KC – key competencies

1. Description of educational program

Doctor by profile (PhD) educational program has a scientific and pedagogical orientation and involves fundamental educational, methodological and research training and in-depth study of disciplines in relevant areas of science for the system of higher and postgraduate education and the scientific field.

The educational program for the preparation of a doctor in profile assumes fundamental educational, methodological and research training and an in-depth study of disciplines in relevant areas of science for the sectors of the national economy and the social sphere: education, medicine, law, arts, economics, business administration and in the field of national security and military affairs.

Doctoral educational programs in terms of vocational training are developed on the basis of studying the experience of foreign universities and research centers that implement accredited training programs for PhD doctors or doctors in the profile.

The content of the educational program of specialized doctoral studies is established by the university itself.

The main criterion of completion of the educational process for the preparation of PhDs (PhDs) is a mastering of at least 180 academic credits by a doctoral student, including all types of educational and scientific activities.

The term of study in doctoral studies is determined by the amount of mastered academic credits. When mastering a set amount of academic credits and achieving the expected learning outcomes for a PhD degree or in profile, the doctoral education program is considered fully mastered.

Training in doctoral studies is carried out on the basis of master's educational programs in two areas:

1) scientific and pedagogical with a study period of at least three years;

2) specialized with a study period of at least three years.

2. Purpose and objectives of educational program

Purpose of EP:

The purpose of the educational program is to train competitive PhD doctors in the profile who possess modern competencies and skills, equipment and technologies that contribute to solving issues arising in industrial enterprises by providing in-depth theoretical knowledge and practical experience in the field of mechanical engineering and operation of machinery and equipment.

Types of employment

Graduates of this SP can conduct the following professional activities:

- pedagogical;

- research;

- organizational and managerial;

- production and technology.

Objects of professional activity

The objects of professional activity of the OP are:

- institutions of higher and postgraduate education;
- research and design organizations;
- enterprises of the mining and metallurgical and oil and gas industry;

- enterprises for the manufacture and production of technological equipment and the organization for the maintenance of technological machines.

Tasks of EP:

to deepen the system knowledge of doctoral students, allowing them to give a critical assessment of the problems studied and discussed in the framework of modern production;

- develop skills in analyzing the designs of technological machines and equipment based on the use of modern digital technologies;

- to deepen the skills to work with modern foreign and domestic scientific literature and to give their own assessment of the events in the creation of machines and equipment;

- to expand the fluency in English necessary for writing scientific articles, reading foreign scientific literature, continuing education in foreign educational institutions, participating in international conferences and negotiations with foreign partners;

- to develop the ability to contribute to the development of the latest trends in the digitalization of technological machines and equipment through original scientific research.

3. Requirements for evaluating the educational program learning outcomes

1) have an idea:

- about the main stages of development and the change of paradigms in the evolution of science;

- about the subject, world outlook and methodological specificity of natural (social, humanitarian, economic) sciences;

- about scientific schools of the corresponding branch of knowledge, their theoretical and practical developments;

- about scientific concepts of world and Kazakhstan science in the relevant field;

- about the mechanism of implementation of scientific developments in practical activities;

- about the norms of interaction in the scientific community;

- on the pedagogical and scientific ethics of a research scientist;

2) know and understand:

- current trends, trends and patterns of development of domestic science in the context of globalization and internationalization;

- methodology of scientific knowledge;

- achievements of world and Kazakhstan science in the relevant field;

- (recognize and accept) the social responsibility of science and education;

- perfectly foreign language for scientific communication and international cooperation;

3) be able to:

- organize, plan and implement the research process;

- analyze, evaluate and compare various theoretical concepts in the field of research and draw conclusions;

- analyze and process information from various sources;

- conduct an independent scientific study, characterized by academic integrity, on the basis of modern theories and methods of analysis;

- generate their own new scientific ideas, communicate their knowledge and ideas to the scientific community, expanding the boundaries of scientific knowledge;

- choose and effectively use modern research methodology;

- plan and forecast their further professional development;

4) have skills:

- critical analysis, evaluation and comparison of various scientific theories and ideas;

- analytical and experimental research activities;

- planning and forecasting research results;

- oratory and public speaking at international scientific forums, conferences and seminars;

- scientific writing and scientific communication;

- planning, coordinating and implementing research processes;

- a systematic understanding of the field of study and demonstrate the quality and effectiveness of selected scientific methods;

- participation in scientific events, fundamental scientific domestic and international projects;

- leadership and team management;

- responsible and creative attitude to scientific and scientific-pedagogical activity;

- carrying out patent search and experience in transferring scientific information using modern information and innovative technologies;

- protection of intellectual property rights to scientific discoveries and developments;

- free communication in a foreign language;

5) be competent:

- in the field of scientific and educational activities in the context of rapid updating and growth of information flows;

- in carrying out theoretical and experimental research;

- in the formulation and solution of theoretical and applied problems in scientific research;

- in carrying out professional and comprehensive analysis of problems in the relevant field;

- in matters of interpersonal communication and human resource management;

- in matters of university training specialists;

- in the examination of scientific projects and research;

- in ensuring continuous professional growth.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of the field of	8D07 «Engineering, manufacturing and civil
	education	engineering»
2	Code and classification of training	8D071 «Engineering and engineering trades»
	directions	
3	Educational program group	D103 «Mechanics and metal working»
4	Educational program name	Industrial engineering
5	Short description of educational program	The educational program for the preparation of a
		Doctor by profile (PhD) has a scientific and
		pedagogical orientation and assumes fundamental
		educational, methodological and research training and
		in-depth study of disciplines in the relevant fields of
		sciences for the system of higher and postgraduate
		education and the scientific sphere
6	Purpose of EP	The purpose of the educational program is to train
		competitive PhD doctors in the profile who possess
		modern competencies and skills, equipment and
		technologies that contribute to solving issues arising in
		industrial enterprises by providing in-depth theoretical
		knowledge and practical experience in the field of
		mechanical engineering and operation of machinery
		and equipment
7	Type of EP	new
8	The level based on NQF	8
9	The level based on IQF	8
10	Distinctive features of EP	no Communication shills
11	List of competencies of educational	Communication skills
	program	Research competencies:
		Information and communication competencies
		Management competencies:
		Creative competencies
		Special professional competencies
12	Learning outcomes of educational	LO 1: Organize, plan and implement industrial
	program	experiments, analyze, evaluate and compare research
		results and draw conclusions
		LO2: To know and understand modern trends,
		directions and patterns of development of domestic
		science in the context of globalization and is fluent in
		a foreign language for scientific communication and
		international cooperation
		LO3: Apply systematic knowledge in the field of
		theory and practice of the use of mechanization and
		automation of technological processes, advanced
		methods of analysis and diagnosis of tribotechnical
		processes, conduct tribotechnical tests for research
		purposes
		LO4 : Apply systematic knowledge in the field of

	 theory and practice of the use of mechanization and automation of technological processes, advanced methods of analysis and diagnosis of tribotechnical processes, conduct tribotechnical tests for research purposes LO5: Formulate system knowledge for independent research in the field of predictive analysis of machinery and equipment. Analyze theoretical and experimental research in order to modernize or create new methods LO6: Master the methods of optimizing production processes in mechanical engineering and conducting engineering experiments, optimization tools using reengineering and elements of artificial intelligence LO7: Analyze and predict trends in the use of laser technologies in various production processes, create conditions and requirements for their widespread introduction into production
13 Education form	full
14 Period of training	3 years
15 Amount of credits	180
16 Languages of instruction	Kazakh/Russian
17 Academic degree awarded	Doctor by profile (PhD)
18 Developer(s) and authors	Academic Affairs Committee

N⁰	Discipline name	Short description of discipline	Amount	Generated learning outcomes (codes)						
	-		of	LO1 LO2 LO3 LO4 LO5 LO6						LO7
			credits							
		Cycle of basic	disciplines							
		University co	omponent							
1	Methods of scientific research	Purpose: It consists in mastering knowledge about the laws, principles, concepts, terminology, content, specific features of the organization and management of scientific research using modern methods of scientometry. Contents: structure of technical sciences, application of general scientific, philosophical and special methods of scientific research, principles of organization of scientific research, methodological features of modern science, ways of development of science and scientific research, the role of technical sciences, computer science and engineering research in theory and	5	v	V					
2	Academic writing	Objective: to develop academic writing skills and writing strategies for doctoral students in engineering and natural sciences. Content: fundamentals and general principles of academic writing, including: writing effective sentences and paragraphs, writing an abstract, introduction, conclusion, discussion, and references; in-text citation; preventing plagiarism; and preparing a conference presentation Cycle of basic Component	5 disciplines of choice	V	V					
3	An industrial	The purpose of mastering the discipline is to	5	v		v				
	experiment in the	study the basics of the modern theory of								

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

	operation of	industrial experiment, focused on its practical						
	machinery and	use. The course program includes the study of						
	equipment	methods for planning experiments, determining						
		their number in order to obtain reliable results.						
		Skills are acquired in using the Wilson Boxing						
		steep climbing method. The possibilities of						
		programs for static processing of the results of						
		industrial experiments are being studied.						
		Methods of plotting and empirical formulas are						
		being mastered to obtain characteristics of						
		reliability, tightness of connection, coefficient of						
		variation and other indicators						
4	Photonics in	The purpose of the discipline is to acquire	5				v	v
	mechanical	fundamental and applied practical knowledge in						
	engineering	the field of photonics, laser technologies used in						
		industry. These technologies are based on the						
		transfer of energy or information by a stream of						
		photons. Laser methods of processing by cutting						
		and welding are being studied. The processes of						
		transmission and use of light by nanomaterials,						
		the processes of absorption, reflection and						
		scattering of light are studied. Processing of						
		materials with fiber lasers. The study of lasers in						
		the processing of materials: laser cutting, laser						
		processing, sintering, perforation, laser surface						
		modification. Students will gain practical						
		knowledge in conducting scientific research on						
		laser technologies						
5	Intellectual	Purpose: the goal is to train specialists in the	5	v	v			
	property and the	field of intellectual property law who can						
	global market	analyze and predict trends in its development in						
		the global market, develop strategies for the						
		protection and commercialization of intellectual						
		property. Contents: global aspects of intellectual						

	7			1	1	1		1		· · · · · · · · · · · · · · · · · · ·
		property and its role in international trade and								
		economics, analysis of international agreements								
1		and conventions, IP management strategies,								
		cases of protection and violation of intellectual								
		property rights in various jurisdictions								
		Cycle of profile	e disciplines	5						
		Component	of choice							
6	Complex	The aim is to form a system of knowledge	5			v	v			
	mechanization	among students in the field of theory and								
	and automation of	practice of the use of mechanization and								
	technological	automation of technological processes.								
	processes and	Summary: formation of knowledge about the								
	machines	theory and practice of using automation								
		equipment and obtaining objective data on								
		technological production and operation of								
		machines; formation of knowledge and skills in								
		the development and use of information								
		technologies and machine learning capabilities								
		in solving problems of system analysis and								
		forecasting of the technical condition of								
		equipment; formation of knowledge for the								
		development of expert systems for the								
		development of scientifically sound solutions								
		during operation and maintenance of								
		technological equipment								
7	Optimization	The purpose of the discipline is to develop skills	5						v	v
	solutions in	in the application of mathematical and computer								
	production	optimization methods in the production								
	processes	processes of mechanical engineering. The								
		discipline introduces mathematical optimization								
		problems and ways to solve them, with modern								
1		SAE systems used in the design and								
		optimization of technological systems and								
1		processes. The methodology of the experiment,								

		mathematical methods of processing research							
		results are considered. Concepts of engineering,							
		laboratory and industrial experiment, bench							
		research. The possibilities of artificial							
		intelligence for solving optimization problems in							
		the design of equipment and processes of							
		mechanical engineering are considered							
8	Methods of	The purpose of the discipline is to form a system	5		v		v		
	increasing	of knowledge among students in the field of							
	reliability in the	theory and practice of the use of predictive							
	operation of	technologies in the maintenance and repair of							
	machinery and	technological equipment. Summary: formation							
	equipment	of skills in using information technology (control							
		systems – SCADA) in solving problems of							
		system analysis and forecasting the technical							
		condition of equipment; formation of knowledge							
		about technical means of obtaining objective							
		data on the operation of machines; formation of							
		knowledge on the study and practical use of							
		computer programs for analyzing data arrays,							
		cloud services in predictive analytics technology							
9	Tribotechnical	The purpose of the discipline is to develop skills	5			v		v	
	processes in the	in the theory and practice of tribotechnical							
	processing of	processes and their application to friction units							
	materials	of equipment. The discipline introduces							
		tribotechnical processes in ensuring the required							
		operational characteristics and reliability of							
		equipment, with the main types and patterns of							
		friction and wear, including in relation to							
		specific products. The influence of tribotechnical							
		processes on the characteristics of equipment.							
		methods for determining the power, speed and							
		other operating conditions of friction units and							
		the choice of materials are considered							

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV, 3EPTTEY YHM

(B3201

1H :

APPROVED Chairman of the Management Board-Rector of Kazniu minici after K.Satpayev 2000 - 110 -

CURRICULUM of Educational Program on enrollment for 2024-2025 academic year

Educational program 8D07120 - "Industrial engineering" Group of educational programs D103 - "Mechanics and metal working"

	Form of study: full-time	Duration	n of study:	3 year				Acade	mic degree	e: Doctor l	y profile		
	Name of disciplines	Cycle	Total	Total	Classroo	SIS	Form of	Alloc	ation of fac	e-to-face tr	aining base	d on cours	es and
Discipline code			amount in credits	hours	m amount lec/lab/pr	(includin g TSIS)	control	1	2	3	2 co	5	6
CYCLE O	F BASIC DISCIPLINES (BI))				in nours		semester	schlester	semester	semester	semester	semester
		N	M-1. Mod	ule of b	asic trainin	ng (unive	rsity con	nponent)					
MET322	Scientific research methods	BD UC	5	150	2/0/1	105	E	5					
LNG305	Academic writing	BD UC	5	150	0/0/3	105	E	5			-		
				c	omponent	of choice			-		lan an the same		1
			12	Exper	imental re	search m	odule						
TEC319	An industrial experiment in the operation of machinery and equipment					Ŀ							
MSM311	Photonics in mechanical engineering	BD CCH	5	150	2/0/1	105	E	5					
MNG349	Intellectual property and the global market	1											
CYCLE O	F PROFILE DISCIPLINES	(PD)			1								
		M-2	2. Module	e of prot	fessional a	ctivity (co	mponen	t of choic	e)				
	1		Module	of inno	vative tech	nologies	and equi	pment					
TEC320	Complex mechanization and automation of technological processes and machines	PD, CCH	5	150	2/0/1	105	E	5					
MSM310	Optimization solutions in production processes												
TEC321	Methods of increasing reliability in the operation of machinery and equipment	PD, CCH	5	150	2/0/1	105	E	5			1		
MSM312	Tribotechnical processes in the processing of materials				A CONTRACTOR	1.1111111.	N55						
			Low course	M-3.1	Practice-or	iented m	odule			1			
AAP371	Industrial intership	PD UC	20						20				1
	1		N	1-4. Exp	erimental	research	module						1
AAP372	Experimental research work of doctoral student, including internships and doctoral dissertations	ERWDS UC	5			c		5			X		
AAP376	Experimental research work of doctoral student, including internships and doctoral dissertations	ERWDS UC	10						10		*		
AAP374	Experimental research work of doctoral student, including internships and doctoral dissertations	ERWDS UC	90							30	30	30	
AAP375	Experimental research work of doctoral student, including internships and doctoral dissertations	ERWDS UC	18	.*							11 11	×	18
				M-5. N	lodule of i	final attes	station				1		
ECA303	Writing and defending a doctoral dissertation	FA	12							-	3		12
	Total based on UNIVERSITY:		1					30	30	30	30	30	30
									60		50		60

	Number of credits for the entire	period o	of study		
	Cycles of disciplines	12.7	Cre	dits	
Cycle code			university component (UC)	component of choice (CCH)	Total
BD	Cycle of basic disciplines		10	5	15
PD	Cycle of profile disciplines		20	10	30
	Total for theoretical training:	0	30	15	45
	ERWDS				123
FA	Final attestation	12			12
	TOTAL:	12	30	15	180

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol № 170T "11 "07 2024 y.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol № 8 or "05" 07 20 24 y.

Decision of the Academic Council of the Institute of E&ME . Protocol № 8 or "10" 06 2024 y.

Vice-Rector for Academic Affairs

Director of Institute of E&ME

Head of department TM&E

Specialty Council representative from employers

R.K. Uskenbayeva K.K. Yelemessov B.Z. Kaliev A.T. Shakenov